Part Number Hot Search : 
MSK4364H UGSP15D GRF300 STK2038 616LV1 XF001 SF5405 2SA1265N
Product Description
Full Text Search
 

To Download M36L0R7060T1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M36L0R7060T1 M36L0R7060B1
128 Mbit (Multiple Bank, Multilevel, Burst) Flash memory and 64 Mbit (Burst) PSRAM, 1.8 V supply, multichip package
Features
Multichip package - 1 die of 128 Mbit (8 Mb x16, Multiple Bank, Multilevel, Burst) Flash memory - 1 die of 64 Mbit (4 Mb x16) Pseudo SRAM Supply voltage - VDDF = VCCP = VDDQF = 1.7 to 1.95 V - VPPF = 9 V for fast program Electronic signature - Manufacturer Code: 20h - Top Device Code M36L0R7060T1: 88C4h - Bottom Device Code M36L0R7060B1: 88C5h Package - ECOPACK(R)
FBGA
TFBGA88 (ZAQ) 8 x 10 mm
Security - 64 bit unique device number - 2112 bit user programmable OTP Cells Block locking - All blocks locked at power-up - Any combination of blocks can be locked with zero latency - WPF for Block Lock-Down - Absolute Write Protection with VPPF = VSS
Flash memory
Synchronous / Asynchronous Read - Synchronous Burst Read mode: 54 MHz, 66 MHz - Random Access: 70 ns, 85 ns Synchronous Burst Read Suspend Programming time - 2.5 s typical word program time using Buffer Enhanced Factory Program command Memory organization - Multiple Bank memory array: 8 Mbit banks - Parameter Blocks (top or bottom location) Common Flash Interface (CFI) 100 000 program/erase cycles per block Dual operations - program/erase in one Bank while read in others - No delay between read and write operations


PSRAM
Access time: 70 ns Asynchronous Page Read - Page Size: 4, 8 or 16 words - Subsequent read within page: 20 ns Low power features - Automatic Temperature-compensated SelfRefresh (TCR) - Partial Array Self-Refresh (PASR) - Deep Power-Down (DPD) mode Synchronous Burst Read/Write

May 2007
Rev 1
1/22
www.st.com 1
Contents
M36L0R7060T1, M36L0R7060B1
Contents
1 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 Address inputs (A0-A22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data input/output (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Clock (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Wait (WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flash Chip Enable (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flash Output Enable (GF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flash Write Enable (WF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flash Write Protect (WPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flash Reset (RPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PSRAM Chip Enable input (EP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PSRAM Write Enable (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PSRAM Output Enable (GP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PSRAM Upper Byte Enable (UBP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PSRAM Lower Byte Enable (LBP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PSRAM Configuration Register Enable (CRP) . . . . . . . . . . . . . . . . . . . . . 11 VDDF supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VCCP supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VDDQF supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 VPPF Program supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 4 5 6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/22
M36L0R7060T1, M36L0R7060B1
Contents
7 8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3/22
List of tables
M36L0R7060T1, M36L0R7060B1
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Main operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Stacked TFBGA88 8 x 10 mm - 8 x 10 active ball array, 0.8 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4/22
M36L0R7060T1, M36L0R7060B1
List of figures
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 TFBGA88 8 x 10 mm, 8 x 10 ball array - 0.8 mm pitch, package outline . . . . . . . . . . . . . . 18
5/22
Description
M36L0R7060T1, M36L0R7060B1
1
Description
The M36L0R7060T1 and M36L0R7060B1 combine two memory devices in a multichip package:

a 128-Mbit, Multiple Bank Flash memory, the M58LR128HT or M58LR128HB a 64-Mbit PseudoSRAM, the M69KB096AM
The purpose of this document is to describe how the two memory components operate with respect to each other. It must be read in conjunction with the M58LR128HTB and M69KB096AM datasheets, where all specifications required to operate the Flash memory and PSRAM components are fully detailed. These datasheets are available from your local STMicroelectronics distributor. Recommended operating conditions do not allow more than one memory to be active at the same time. The memory is offered in a Stacked TFBGA88 (8 x 10 mm, 8 x 10 ball array, 0.8 mm pitch) package. The memory is supplied with all the bits erased (set to `1'). Figure 1. Logic diagram
VDDQF VPPF VCCP 16 DQ0-DQ15 EF GF WF RPF WPF L K EP GP WP CRP UBP LBP M36L0R7060T1 M36L0R7060B1 WAIT
VDDF 23 A0-A22
VSS
AI13200
6/22
M36L0R7060T1, M36L0R7060B1 Table 1. Signal names
Function Address inputs Common Data input/output Latch Enable input for Flash memory and PSRAM Burst Clock for Flash memory and PSRAM Wait Data in Burst Mode for Flash memory and PSRAM Flash memory power supply Flash power supply for I/O buffers Flash optional supply voltage for Fast Program & Erase Ground PSRAM power supply Not connected internally Do not use as internally connected Inputs I/O Input Input Output
Description
Signal name A0-A22 DQ0-DQ15 L K WAIT VDDF VDDQF VPPF VSS VCCP NC DU Flash memory EF GF WF RPF WPF PSRAM EP GP WP CRP UBP LBP Chip Enable input Output Enable input Write Enable input Chip Enable input Output Enable Input Write Enable input Reset input Write Protect input
Direction
Input Input Input Input Input
Input Input Input Input Input Input
Configuration Register Enable input Upper Byte Enable input Lower Byte Enable input
7/22
Description Figure 2.
M36L0R7060T1, M36L0R7060B1 TFBGA connections (top view through package)
1 2 3 4 5 6 7 8
A
DU
DU
DU
DU
B
A4
A18
A19
VSS
VDDF
NC
A21
A11
C
A5
LBP
NC
VSS
NC
K
A22
A12
D
A3
A17
NC
VPPF
WP
EP
A9
A13
E
A2
A7
NC
WPF
L
A20
A10
A15
F
A1
A6
UBP
RPF
WF
A8
A14
A16
G
A0
DQ8
DQ2
DQ10
DQ5
DQ13
WAIT
NC
H
GP
DQ0
DQ1
DQ3
DQ12
DQ14
DQ7
NC
J
NC
GF
DQ9
DQ11
DQ4
DQ6
DQ15
VDDQF
K
EF
DU
DU
NC
VCCP
NC
VDDQF
CRP
L
VSS
VSS
VDDQF
VDDF
VSS
VSS
VSS
VSS
M
DU
DU
DU
DU
AI12023
8/22
M36L0R7060T1, M36L0R7060B1
Signal descriptions
2
Signal descriptions
See Figure 1: Logic diagram and Table 1: Signal names, for a brief overview of the signals connect-ed to this device.
2.1
Address inputs (A0-A22)
Addresses A0-A21 are common inputs for the Flash memory and PSRAM components. The other lines (A22) is an input for the Flash memory component only. The Address inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable signal (EF) and through the Write Enable signal (WF), while the PSRAM is accessed through the Chip Enable signal (EP) and the Write Enable signal (WP).
2.2
Data input/output (DQ0-DQ15)
The Data I/O output the data stored at the selected address during a Bus Read operation or input a command or the data to be programmed during a Bus Write operation. For the PSRAM component, the upper Byte Data inputs/outputs (DQ8-DQ15) carry the data to or from the upper part of the selected address when Upper Byte Enable (UBP) is driven Low. The lower Byte Data inputs/outputs (DQ0-DQ7) carry the data to or from the lower part of the selected address when Lower Byte Enable (LBP) is driven Low. When both UBP and LBP are disabled, the Data inputs/outputs are high impedance.
2.3
Latch Enable (L)
The Latch Enable pin is common to the Flash memory and PSRAM components. For details of how the Latch Enable signal behaves, please refer to the datasheets of the respective memory components: M69KB096AM for the PSRAM and M58LR128HTB for the Flash memory.
2.4
Clock (K)
The Clock input pin is common to the Flash memory and PSRAM components. For details of how the Clock signal behaves, please refer to the datasheets of the respective memory components: M69KB096AM for the PSRAM and M58LR128HTB for the Flash memory.
9/22
Signal descriptions
M36L0R7060T1, M36L0R7060B1
2.5
Wait (WAIT)
WAIT is an output pin common to the Flash memory and PSRAM components. However the WAIT signal does not behave in the same way for the PSRAM and the Flash memory. For details of how it behaves, please refer to the M69KB096AM datasheet for the PSRAM and to the M58LR128HTB datasheet for the Flash memory.
2.6
Flash Chip Enable (EF)
The Flash Chip Enable input activates the control logic, input buffers, decoders and sense amplifiers of the Flash memory component. When Chip Enable is Low, VIL, and Reset is High, VIH, the device is in active mode. When Chip Enable is at VIH the Flash memory is deselected, the outputs are high impedance and the power consumption is reduced to the standby level.
2.7
Flash Output Enable (GF)
The Output Enable pin controls the data outputs during Flash memory Bus Read operations.
2.8
Flash Write Enable (WF)
The Write Enable controls the Bus Write operation of the Flash memory's Command Interface. The data and address inputs are latched on the rising edge of Chip Enable or Write Enable whichever occurs first.
2.9
Flash Write Protect (WPF)
Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is Low, VIL, Lock-Down is enabled and the protection status of the LockedDown blocks cannot be changed. When Write Protect is at High, VIH, Lock-Down is disabled and the Locked-Down blocks can be locked or unlocked. (See the Lock Status Table in the M30L0R7000T1/B1 datasheet).
2.10
Flash Reset (RPF)
The Reset input provides a hardware reset of the Flash memory. When Reset is at VIL, the memory is in Reset mode: the outputs are high impedance and the current consumption is reduced to the Reset Supply Current IDD2. Refer to the M58LR128HTB datasheet, for the value of IDD2. After Reset all blocks are in the Locked state and the Configuration Register is reset. When Reset is at VIH, the device is in normal operation. Exiting Reset mode the device enters Asynchronous Read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid data outputs. The Reset pin can be interfaced with 3 V logic without any additional circuitry. It can be tied to VRPH (refer to the M58LR128HTB datasheet).
10/22
M36L0R7060T1, M36L0R7060B1
Signal descriptions
2.11
PSRAM Chip Enable input (EP)
The Chip Enable input activates the PSRAM when driven Low (asserted). When deasserted (VIH), the device is disabled, and goes automatically in low-power Standby mode or Deep Power-down mode, according to the RCR settings.
2.12
PSRAM Write Enable (WP)
Write Enable, WP, controls the Bus Write operation of the PSRAM. When asserted (VIL), the device is in Write mode and Write operations can be performed either to the configuration registers or to the memory array.
2.13
PSRAM Output Enable (GP)
When held Low, VIL, the Output Enable, GP, enables the Bus Read operations of the memory.
2.14
PSRAM Upper Byte Enable (UBP)
The Upper Byte En-able, UBP, gates the data on the Upper Byte Data inputs/outputs (DQ8DQ15) to or from the upper part of the selected address during a Write or Read operation.
2.15
PSRAM Lower Byte Enable (LBP)
The Lower Byte Enable, LBP, gates the data on the Lower Byte Data inputs/outputs (DQ0DQ7) to or from the lower part of the selected address during a Write or Read operation. If both LBP and UBP are disabled (High) during an operation, the device will disable the data bus from receiving or transmitting data. Although the device will seem to be deselected, it remains in an active mode as long as EP remains Low.
2.16
PSRAM Configuration Register Enable (CRP)
When this signal is driven High, VIH, bus read or write operations access either the value of the Refresh Configuration Register (RCR) or the Bus Configuration Register (BCR) according to the value of A19.
2.17
VDDF supply voltage
VDDF provides the power supply to the internal core of the Flash memory. It is the main power supply for all Flash memory operations (Read, Program and Erase).
2.18
VCCP supply voltage
VCCP provides the power supply to the internal core of the PSRAM device. It is the main power supply for all PSRAM operations.
11/22
Signal descriptions
M36L0R7060T1, M36L0R7060B1
2.19
VDDQF supply voltage
VDDQF provides the power supply for the Flash I/O pins. This allows all outputs to be powered independently of the Flash core power supplies, VDDF and VCCP.
2.20
VPPF Program supply voltage
VPPF is both a Flash control input and a Flash power supply pin. The two functions are selected by the voltage range applied to the pin. If VPPF is kept in a low voltage range (0V to VDDQF) VPPF is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection against Program or Erase, while VPP in the VPP1 range enables these functions (see the M58LR128HTB datasheet for the relevant values). VPPF is only sampled at the beginning of a Program or Erase; a change in its value after the operation has started does not have any effect and Program or Erase operations continue. If VPPF is in the range of VPPH it acts as a power supply pin. In this condition VPPF must be stable until the Program/Erase algorithm is completed.
2.21
VSS ground
VSS is the common ground reference for all voltage measurements in the Flash (core and I/O buffers) and PSRAM chips. It must be connected to the system ground.
Note:
Each Flash memory device in a system should have their supply voltage (VDDF) and the program supply voltage VPPF decoupled with a 0.1 F ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). See Figure 5: AC measurement load circuit. The PCB track widths should be sufficient to carry the required VPPF program and erase currents.
12/22
M36L0R7060T1, M36L0R7060B1
Functional description
3
Functional description
The PSRAM and Flash memory components have separate power supplies but share the same grounds. They are distinguished by two Chip Enable inputs: EF for the Flash memory and EP for the PSRAM. Recommended operating conditions do not allow more than one device to be active at a time. The most common example is simultaneous read operations on one of the Flash memory and the PSRAM components which would result in a data bus contention. Therefore it is recommended to put the other devices in the high impedance state when reading the selected device. Figure 3. Functional block diagram
A22 EF WF RPF WPF GF 128 Mbit Flash Memory
WAIT K L A0-A21 VDDF VDDQF VPPF VCCP VSS DQ0-DQ15
EP GP WP CRP UBP LBP
AI12024
64 Mbit PSRAM
13/22
Functional description Table 2. Main operating modes(1)
(2)(3)
M36L0R7060T1, M36L0R7060B1
Operation
EF GF WF
LF
RPF WAITF(4)
EP CRP GP
A0A17 WP LBP,UBP A19 A18 A20A21
DQ15-DQ0
Flash Read Flash Write Flash Address Latch Flash Output Disable Flash Standby Flash Reset PSRAM Read PSRAM Write PSRAM Program Configuration Register (CR Controlled)(7) PSRAM Standby
VIL VIL VIH VIL(5) VIH VIL VIH VIL VIL(5) VIH VIL X VIH VIL X X X VIH VIH VIH VIL Hi-Z Hi-Z Hi-Z VIL VIL The Flash memory must be disabled. VIL VIH X VIL X 00(RCR) BCR/ 10(BCR) RCR (8) Data VIL VIL VIL X VIH VIL VIL VIL Valid Valid Any PSRAM mode is allowed. PSRAM must be disabled.
Flash Data Out Flash Data In Flash Data Out or Hi-Z(6) Hi-Z Hi-Z Hi-Z PSRAM data out PSRAM data in
VIL VIH VIH VIH X X X X X
Hi-Z
VIH Any Flash mode is allowed. VIH
VIL X
X X
X X
X X
X X
X X
X X
Hi-Z Hi-Z
PSRAM Deep Power-Down(9)
1. X = Don't care.
2. In the PSRAM, the Clock signal, K, must remain Low in asynchronous operating mode, and to achieve standby power in Standby and Deep Power-Down modes. 3. The PSRAM must have been configured to operate in asynchronous mode by setting BCR15 to `1' (default value). 4. WAIT signal polarity is configured using the Set Configuration Register command. See the M58LR128HTB datasheet for details. 5. LF can be tied to VIH if the valid address has been previously latched. 6. Depends on GF. 7. BCR and RCR only. 8. A18 and A19 are used to select the BCR, RCR or DIDR registers. 9. Bit 4 of the Refresh Configuration Register must be set to `0' and E must be maintained High, VIH, during Deep PowerDown mode.
14/22
M36L0R7060T1, M36L0R7060B1
Maximum rating
4
Maximum rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3.
Symbol TA TBIAS TSTG VIO
Absolute maximum ratings
Value Parameter Min Ambient operating temperature Temperature under bias Storage temperature Input or output voltage -25 -25 -55 -0.2 -0.2 -0.2 Max 85 85 125 2.45 2.45 10 100 100 C C C V V V mA hours Unit
VDDF, VDDQF, Core and input/output supply VCCP voltages VPPF IO tVPPFH Flash program voltage Output short circuit current Time for VPPF at VPPFH
15/22
DC and AC parameters
M36L0R7060T1, M36L0R7060B1
5
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4: Operating and AC measurement conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. Operating and AC measurement conditions
Flash memory Parameter Min VDDF supply voltage VCCP supply voltage VDDQF supply voltage
VPPF supply voltage (Factory environment) VPPF supply voltage (Application
PSRAM Unit Min - 1.7 - - - -25 30 16.7 Max - 1.95 - - - 85 V V V V V C pF k 2 0 to VCCP/2 VCCP/2 ns V V
Max 1.95 - 1.95 9.5 VDDQF +0.4 85 30 16.7 5
1.7 - 1.7 8.5 -0.4 -25
environment) Ambient operating temperature Load capacitance (CL) Output circuit resistors (R1, R2) Input rise and fall times Input pulse voltages Input and output timing ref. voltages
0 to VDDQF VDDQF/2
Figure 4.
AC measurement I/O waveform
VDDQF VDDQF/2 0V
AI06161b
16/22
M36L0R7060T1, M36L0R7060B1 Figure 5. AC measurement load circuit
VDDQF
DC and AC parameters
VDDF
VDDQF R1 DEVICE UNDER TEST
0.1F 0.1F
CL
R2
CL includes JIG capacitance
AI08364c
Table 5.
Symbol CIN COUT
Device capacitance
Parameter Input capacitance Output capacitance Test Condition VIN = 0 V VOUT = 0 V Min Max(1) 14 18 Unit pF pF
1. Sampled only, not 100% tested.
Please refer to the M58LR128HTB and M69KB096AM datasheets for further DC and AC characteristics values and illustrations.
17/22
Package mechanical
M36L0R7060T1, M36L0R7060B1
6
Package mechanical
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second-level interconnect. The category of Second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 6. TFBGA88 8 x 10 mm, 8 x 10 ball array - 0.8 mm pitch, package outline
D D1
e SE E E2 E1 b BALL "A1"
ddd FE FE1 A A1 FD SD A2
BGA-Z42
1. Drawing is not to scale.
18/22
M36L0R7060T1, M36L0R7060B1 Table 6.
Package mechanical
Stacked TFBGA88 8 x 10 mm - 8 x 10 active ball array, 0.8 mm pitch, package mechanical data
millimeters inches Max 1.200 0.200 0.850 0.350 8.000 5.600 0.100 10.000 7.200 8.800 0.800 1.200 1.400 0.600 0.400 0.400 - - 9.900 10.100 0.3937 0.2835 0.3465 0.0315 0.0472 0.0551 0.0236 0.0157 0.0157 - - 0.3898 0.300 7.900 0.400 8.100 0.0335 0.0138 0.3150 0.2205 0.0039 0.3976 0.0118 0.3110 0.0157 0.3189 0.0079 Typ Min Max 0.0472
Symbol Typ A A1 A2 b D D1 ddd E E1 E2 e FD FE FE1 SD SE Min
19/22
Part numbering
M36L0R7060T1, M36L0R7060B1
7
Part numbering
Table 7.
Example: Device Type M36 = Multichip package (Multiple Flash + RAM) Flash 1 Architecture L = Multilevel, Multiple Bank, Burst mode Flash 2 Architecture 0 = No Die Operating Voltage R = VDDF = VCCP = VDDQF = 1.7 to 1.95V Flash 1 Density 7 = 128 Mbits Flash 2 Density 0 = No Die RAM 1 Density 6 = 64 Mbits RAM 0 Density 0 = No Die Parameter Blocks Location T = Top Boot Block Flash B = Bottom Boot Block Flash Product Version 1 = 90 nm Flash technology Multilevel Design, 70 and 85 ns speed 0.11 m PSRAM, 70 ns speed, burst mode Package ZAQ = Stacked TFBGA88 8 x 10 mm - 8 x 10 active ball array, 0.8 mm pitch Option E = ECOPACK(R) Standard packing F = ECOPACK(R) Tape & Reel packing
Ordering information scheme
M36 L 0 R 7 0 6 0 T 1 ZAQ E
Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
20/22
M36L0R7060T1, M36L0R7060B1
Revision history
8
Revision history
Table 8.
Date 23-May-2006 31-Aug-2006 07-May-2007
Document revision history
Revision 0.1 0.2 1 First release. PSRAM changed to M69KM096AM. Blank and T removed below Option in Table 7: Ordering information scheme. Document status promoted from Target Specification to full Datasheet. 70 ns speed class and 66 MHz frequency added. Changes
21/22
M36L0R7060T1, M36L0R7060B1
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
22/22


▲Up To Search▲   

 
Price & Availability of M36L0R7060T1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X